Topic: Poor Decisions

Introduction

- The definition of public health economics emphasizes externalities and public goods, but it includes other reasons for public intervention
- One of these is poor decisions (we'll define this in a minute)
- Poor decisions often arise when people make choices between present and future costs or benefits
- Keep this question in mind: Should the public intervene when people make poor decisions?

Discounting

- Before discussing poor decisions, we need to understand discounting
- Economists assume that people discount the future, meaning they value future outcomes less than current outcomes
- For example, Keeler, et al., discounted the external costs of a sedentary lifestyle

• To be specific:
$$U_{t} = \sum_{\tau=0}^{T-t} D(\tau) u_{t+\tau}$$

U = lifetime utility from the perspective of the current period t (t is often assumed to be 0)

T = the last period of the problem (often the last year of life) τ = a 'counter' that goes from 0 up to T-t $D(\tau)$ = the discount function u = utility during period t+ τ

Exponential Discounting

- The *exponential* discount function is: $D(\tau) = \delta^{\tau}$, $0 \le \delta \le 1$
 - A unique feature of the exponential discount function is that the ratio of costs or benefits in any pair of adjacent years is always equal to δ
 - For example, D(3)/D(2) = δ^3/δ^2 = δ and D(103)/D(102) = $\delta^{103}/\delta^{102}$ = δ
 - Keeler, et al., used exponential discounting as do most cost-benefit analyses
 - So what do we mean by *poor decisions*?

Meaning #1: δ is Close to Zero

- People put very little value on future costs and benefits (δ is close to zero)
- Such people may drop out of school, smoke, or engage in risky sex
- But saying these are poor decisions really means, "I think these people should care more about the future than they do."

Meaning #2: δ Increases over Time

- These people learn to appreciate the value of future benefits as they 'grow up'
 - For example, δ = .8 at age 18 and δ = .95 at age 22
 - In other words, D = D(τ ,t)
- Suppose another year of school at age 18 costs €100 and pays
 €200 at age 22
 - The value of the return from the perspective of the 18-year old is €200 x $.8^4 = €82$, so the extra year of school is not worth the cost
 - However, at age 22 the return would have been worth €200 x .95⁴ = €163
 - The person regrets their decision not to invest
- Whose preferences should society respect?
 - No clear answer, but there is a strong bias not to respect the teenager's preferences
 - It is assumed that only 'mature' individuals have the right to act on their preferences, and teenagers are not mature

Meaning #3

- Future values fall very rapidly for small delay periods, but then fall slowly for longer delay periods
- Example: $D(\tau) = 1/(1+\alpha\tau)$
- Suppose $\alpha = .05$:

$$D(0) = 1$$

$$D(1) = .95$$

$$D(1) = .95$$

$$D(2) = .91$$
The discount factor falls in a hyperbolic path
$$D(2) = .91$$

$$D(1)/D(0) = .95$$

$$D(2)/D(1) = .96$$

Hyperbolic & Quasi-Hyperbolic Discounting

- This is called 'hyperbolic discounting" (HD)
 - The ratio of $D(\tau+1)/D(\tau) \rightarrow 1$ as τ gets large
 - Consistent with laboratory experiments: People want rewards today versus tomorrow, but they don't see much difference in the value of a reward in 20 years vs. 21 years
 - Doesn't seem like a big deal, but it is
- With 'quasi-hyperbolic discounting' (QHD) the person places full weight on the current period and then down-weights all future periods by a factor $0 < \beta < 1$ applied to exponential discounting:

D(τ) = 1 if τ = 0
D(τ) =
$$\beta \delta^{\tau}$$
 if τ = 1,2,...

 Results for HD and QHD are similar, so I'll use QHD to illustrate

Example of QHD

- Suppose β = .9 and δ = .95
- At time 0, should I invest €100 that pays €110 in period 1 (or do my homework or clean my room)?
 - No, because $100 > .9 \times .95 \times 110$
- But from the perspective of time 0, should I make that investment in time 1 for a payoff at time 2?
 - Yes, because .9 x .95 x 100 < .9 x .95² x 110
- You always put off the investment and you never make 'tough choices'
- This is an economic theory of *procrastination*

Private Solutions to the Problem

- Rational individuals may adopt 'commitment mechanisms' to ensure they don't procrastinate
 - Smokers leave home without their pack of cigarettes
 - Stick-It web site
- Many people volunteer for programs that limit individual choice
 - Contributions to individual retirement accounts for a given year must be made by April of the following year
- Kevin Volpp, at the University of Pennsylvania, is an expert in using commitment mechanisms to change behavior

Volpp's Study

- Obese and overweight people at a military veterans' medical center were randomly assigned to a control group and two interventions:
 - 1. A <u>lottery</u> for eligible people who achieved a target weight loss
 - 2. A <u>deposit contract</u> in which people invested their own money and lost it if they failed to meet their weight loss goals
- Outcomes: weight loss after the 16-week experiment ended, and weight loss at 7 months (with no financial incentives during the maintenance period)

Results

GROUP	MEAN WEIGHT LOSS AT 16 WEEKS (LBS)	MEAN WEIGHT LOSS AT 7 MONTHS (LBS)
CONTROL	3.9	4.4
LOTTERY	13.1	9.2
CONTRACT	14.0	6.9

- The only other predictor of weight loss was race: blacks lost less weight than whites
- Results show that financial incentives are effective in promoting weight loss
- However, the effects wore off during the maintenance period a common finding in behavior change programs

Chesson's Study

- Harrell Chesson, et al., examined the relation between discount rates and risky sexual behavior among teenagers and young adults
 - Are teenagers and young adults with higher discount rates more likely to engage in risky behavior?
- Note: I have been using <u>discount factors</u>, and they used <u>discount rates</u>
 - The relation between them is $\delta \equiv 1/(1+r)$, so $\delta = .95$ is a discount rate of r $\sim .05$
 - People with high discount factors have low discount rates and vice versa

Measuring Discount Rates

- A common method involves the <u>time tradeoff</u>: Would you rather have €400 today or €1,200 one year from now?
- Repeat the question with payoffs of €800 and €500
 - If you prefer €500 next year to €400 today, your discount rate must be less than .25
 - If you turn down €500 next year but accept €800, your discount rate must be .25 < r < 1
 - If you turn down €800 next year but accept €1,200, your discount rate must be 1 < r < 2
 - If you turn down €1,200 next year, your discount rate must be r > 2
- Almost half of the subjects in their study had discount rates above 2

Results

- Subjects with higher discount rates were more likely to have had risky sex
- They also reversed the model and found that risky sexual behavior predicts higher discount rates
- Conclusion: "...the short-term decision-making focus of teenagers and young adults may be a key factor in the decision to engage in risky sex." (page 228)

Harrell W. Chesson, et al., "Discount Rates and Risky Sexual Behaviors among Teenagers and Young Adults," <u>Journal of risk and Uncertainty</u>, 32 (2006), 217-230

